Guanidinium Heptamolybdate Monohydrate

By Andrea Don and Timothy J. R. Weakley
Chemistry Department, Dundee University, Dundee DD1 4HN, Scotland

(Received 27 September 1980; accepted 18 November 1980)

Abstract

CH}_{6} \mathrm{~N}_{3}\right]_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{C} 2 / c, \quad a=\) 11.979 (7), $b=15.955$ (15), $c=19.923$ (18) $\AA, \beta=$ $92.27(5)^{\circ}, V=3805 \AA^{3}, D_{m}=2 \cdot 46, D_{x}=2.50 \mathrm{Mg}$ $\mathrm{m}^{-3}, Z=4$. Final $R=0.091$ for 1784 independent reflections. The $\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right]^{6-}$ isopolyanion, in which seven distorted MoO_{6} octahedra share edges, is identical with the anion in the heptamolybdates of Na^{+}, K^{+}, and NH_{4}^{+}. The planar cations link the anions through an extensive network of hydrogen bonds.

Introduction. Sodium, potassium, ammonium and guanidinum paramolybdates, which crystallize from aqueous solutions acidified to $\mathrm{H}^{+}: \mathrm{MoO}_{4}^{2-} \simeq 1 \cdot 15$, were all at one time formulated $5 \mathrm{M}_{2} \mathrm{O} \cdot 12 \mathrm{MoO}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ on the basis of chemical analysis (Gmelins Handbuch der Anorganischen Chemie, 1935). The first three were subsequently shown by single-crystal diffraction studies (the most recent have been by Sjöbom \& Hedman, 1973; Evans, Gatehouse \& Leverett, 1975) to contain the heptamolybdate anion $\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right]^{6-}$, whose existence in solution was also demonstrated by potentiometric and X-ray methods (Sasaki \& Sillen, 1968; Johansson, Pettersson \& Ingri, 1974). The possibility remained, however, that guanidinium paramolybdate contained a different anion, since (i) small errors in chemical analysis can radically alter the assigned formulae of isopolyanion salts, and (ii) instances of isomerism are known in the isopolymolybdate series, for instance $\alpha-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ (Fuchs \& Hartl, 1976; Day, Fredrich, Klemperer \& Shum, 1977), β - $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ (Gatehouse, 1977) and $\left[\mathrm{Mo}_{4} \mathrm{O}_{13}^{2-}\right]_{\infty}$ (Gatehouse \& Leverett, 1971).

Colourless elongated prisms, giving satisfactory analyses for $\left[\mathrm{CH}_{6} \mathrm{~N}_{3}\right]_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right] . \mathrm{H}_{2} \mathrm{O}$, were obtained on cooling a mixture of hot solutions of sodium heptamolybdate (approximately 0.3 M in Mo) and guanidinium chloride. Data were collected via equiinclination multi-film Weissenberg photographs of the levels $0-10 k l$ and $h 0-2 l$ by use of $\mathrm{Cu} K a$ radiation. Films were scanned by the SRC Microdensitometer Service, Daresbury Laboratory. Intensities were corrected for absorption ($\mu=19.6 \mathrm{~mm}^{-1}$). The Mo atoms were located in space group Cc by direct methods. All non-hydrogen atoms were located by difference syntheses alternating with cycles of least-squares refine-
ment. It appears that the correct space group is $C 2 / c$, but that one of the four independent cations and the water molecule each have site-occupancy factors of 0.5 at general positions close to, and approximately related by, a centre of symmetry. Refinement in C2/c terminated at $R=0.091, R_{w}=0.089$ [1784 independent reflections, 141 parameters, Mo anisotropic, O, C, and N isotropic, weighting factor $w=(1+$ $\left.0.0133 F^{2}\right)^{-1}$ in last cycle]. The SHELX 76 (Sheldrick, 1976) program was used in all calculations. Atomic

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and isotropic thermal parameters $\left(\times 10^{3}\right)$

	x	y	z	$U\left(\AA^{2}\right)$
Mo(1)	5000	4549 (1)	2500	0.0232 (11)*
$\mathrm{Mo}(2)$	2956 (1)	4230 (1)	3626 (1)	0.0306 (8)*
$\mathrm{Mo}(3)$	5212 (1)	3157 (1)	3805 (1)	0.0273 (8)*
$\mathrm{Mo}(4)$	7229 (1)	3212 (1)	2758 (1)	0.0259 (8)*
O(1)	4165 (11)	5216 (9)	2948 (8)	32 (3)
$\mathrm{O}(2)$	6021 (10)	4168 (9)	3179 (7)	27 (3)
O(3)	4049 (9)	3532 (8)	3018 (7)	22 (2)
O(4)	2184 (13)	3508 (12)	4028 (9)	44 (4)
O(5)	2425 (13)	5194 (11)	3881 (9)	43 (4)
O(6)	4317 (11)	4134 (10)	4151 (8)	33 (3)
O(7)	6241 (13)	3317 (11)	4433 (9)	41 (4)
O(8)	4438 (13)	2331 (12)	4086 (9)	41 (4)
O(9)	6043 (11)	2564 (9)	3170 (8)	29 (3)
O(10)	2197 (11)	4182 (9)	2753 (8)	31 (3)
O(11)	7829 (12)	2412 (11)	2329 (8)	39 (4)
$\mathrm{O}(12)$	8131 (12)	3404 (10)	3435 (8)	36 (3)
N(1)	1247 (15)	381 (14)	4479 (11)	41 (4)
N(2)	2391 (17)	591 (15)	3573 (12)	49 (5)
N(3)	2523 (17)	1466 (15)	4513 (12)	48 (5)
N(4)	-1214 (17)	1682 (15)	4124 (12)	49 (5)
N(5)	108 (17)	1894 (15)	3352 (12)	47 (5)
N(6)	189 (15)	2622 (13)	4339 (11)	39 (4)
N(7)	5939 (16)	915 (15)	2682 (11)	48 (5)
N(8)	5000	-282 (23)	2500	54 (8)
$\mathrm{N}(9) \dagger$	1593 (37)	4150 (34)	184 (25)	44 (10)
$\mathrm{N}(10)^{\dagger}$	279 (38)	4983 (36)	-372 (28)	60 (12)
$\mathrm{N}(11) \dagger$	74 (38)	4587 (38)	751 (28)	61 (12)
C(1)	2065 (18)	801 (15)	4201 (12)	39 (5)
C(2)	-303 (16)	2063 (13)	3912 (12)	32 (4)
C(3)	5000	511 (20)	2500	34 (6)
C(4) ${ }^{+}$	668 (31)	4625 (27)	192 (22)	30 (8)
Aq ${ }^{\dagger}$	-1534 (39)	6162 (39)	-58 (28)	68 (14)

[^0]Table 2. Bond lengths (\AA) in the $\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right]^{6-}$ anion

Point symmetry	$\mathrm{CH}_{6} \mathrm{~N}_{3}^{+}$salt ${ }^{\text {a }}$		$\begin{gathered} \mathrm{NH}_{4}^{+} \text {salt }{ }^{6} \\ m m^{e} \end{gathered}$	$\begin{gathered} \mathrm{Na}^{+} \text {salt }{ }^{\mathrm{c}} \\ m m^{e} \end{gathered}$
	y $2^{\text {d }}$	$m m^{\text {e }}$		
$\mathrm{Mo}(1)-\mathrm{O}(1)$	1.732 (14)	1.73	1.74	1.76
$\mathrm{Mo}(2)-\mathrm{O}(4)$	1.698 (17)	1.70	1.72	1.72
$\mathrm{Mo}(2)-\mathrm{O}(5)$	1.747 (18)	1.75	1.75	1.72
$\mathrm{Mo}(3)-\mathrm{O}(7)$	1.740 (17)	1.73	1.72	1.74
$\mathrm{Mo}(4)-\mathrm{O}(12)$	1.722 (17))	1.73		
$\mathrm{Mo}(3)-\mathrm{O}(8)$	1.718 (17)	1.71	1.73	1.70
$\mathrm{Mo}(4)-\mathrm{O}(11)$	1.710 (16)	1.89	1.90	
$\mathrm{Mo}(1)-\mathrm{O}(2)$	1.888 (15)	1.89	1.90	1.89
$\mathrm{Mo}(2)-\mathrm{O}(6)$	$1.909(15)\}$	1.92	1.92	1.92
$\mathrm{Mo}(2)-\mathrm{O}(10)$	1.932 (16))	1.92		
$\mathrm{Mo}(3)-\mathrm{O}(6)$	2.028 (15)	2.01	1.97	1.98
$\mathrm{Mo}(4)-\mathrm{O}\left(10^{1}\right)$	1.990 (17))	2.01	1.97	1.98
$\mathrm{Mo}(3)-\mathrm{O}(9)$	1.894 (13)	1.93	1.92	1.92
$\mathrm{Mo}(4)-\mathrm{O}(9)$	1.963 (13))	1.93	1.92	1.92
$\mathrm{Mo}(1)-\mathrm{O}(3)$	2.256 (13)	2.26	2.25	2.26
$\mathrm{Mo}(2)-\mathrm{O}(1)$	2.561 (14)	$2 \cdot 56$	2.53	2.56
$\mathrm{Mo}(2)-\mathrm{O}(3)$	$2 \cdot 133$ (12)	$2 \cdot 13$	$2 \cdot 16$	$2 \cdot 16$
$\mathrm{Mo}(3)-\mathrm{O}(2)$	2.279 (13)	$2 \cdot 28$	$2 \cdot 29$	$2 \cdot 29$
$\mathrm{Mo}(4)-\mathrm{O}(2)$	2.284 (13))	2.28		
$\mathrm{Mo}(3)-\mathrm{O}(3)$	$2 \cdot 140$ (13) ${ }^{2} 10$	$2 \cdot 17$	$2 \cdot 18$	$2 \cdot 16$
$\mathrm{Mo}(4)-\mathrm{O}\left(3^{1}\right)$	$2 \cdot 193$ (17))	$2 \cdot 17$	$2 \cdot 18$	$2 \cdot 16$

(a) This work. (b) Evans, Gatehouse \& Leverett (1975). (c) Sjöbom \& Hedman (1973). (d) Actual point symmetry. (e) Ideal point symmetry, bond lengths averaged.

Table 3. Other interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Mo}(1) \cdots \mathrm{Mo}(2)$	3.424 (2)		$\mathrm{Mo}(2) \cdots \mathrm{Mo}{ }^{(4)}$	$3 \cdot 201$ (2)
$\mathrm{Mo}(1) \cdots \mathrm{Mo}(3)$	3.421 (2)		$\operatorname{Mo}(3) \cdots \mathrm{Mo}(4)$	$3 \cdot 256$ (2)
$\mathrm{Mo}(1) \cdots \mathrm{Mo}(4)$	3.440 (2)		$\mathrm{Mo}(3) \cdots \mathrm{Mo}{ }^{(4)}$	4.187 (3)
$\mathrm{Mo}(2) \cdots \mathrm{Mo}(3)$	$3 \cdot 207$ (2)			
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}\left(1^{1}\right)$	104.1	(1.0)	$\mathrm{O}(6)-\mathrm{Mo}(3)-\mathrm{O}(9)$	$155 \cdot 5$ (6)
$\mathrm{O}(4)-\mathrm{Mo}(2)-\mathrm{O}(5)$	104.5	(8)	$\mathrm{O}(9)-\mathrm{Mo}(4)-\mathrm{O}\left(10^{\text {i }}\right.$)) 153.4 (7)
$\mathrm{O}(7)-\mathrm{Mo}(3)-\mathrm{O}(8)$	104.7	(9)	$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}\left(3^{\text {i }}\right.$)	88.0 (6)
$\mathrm{O}(11)-\mathrm{Mo}(4)-\mathrm{O}(12$	2) $105 \cdot 1$	(7)	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}(3)$	69.4 (5)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}\left(2^{1}\right)$	142.4	(7)	$\mathrm{O}(2)-\mathrm{Mo}(3)-\mathrm{O}(3)$	$71 \cdot 3$ (5)
$\mathrm{O}(6)-\mathrm{Mo}(2)-\mathrm{O}(10)$	148.4	(6)	$\mathrm{O}(2)-\mathrm{Mo}(4)-\mathrm{O}\left(3^{\prime}\right)$	$70 \cdot 7$ (6)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.33 (3)		$\mathrm{C}(3)-\mathrm{N}(7)$	$1 \cdot 33$ (3)
$\mathrm{C}(1)-\mathrm{N}(2)$	1.37 (3)		$\mathrm{C}(3)-\mathrm{N}(8)$	$1 \cdot 27$ (5)
$\mathrm{C}(1)-\mathrm{N}(3)$	1.34 (3)		$\mathrm{C}(4)-\mathrm{N}(9)$	1.34 (7)
$\mathrm{C}(2)-\mathrm{N}(4)$	1.33 (3)		$\mathrm{C}(4)-\mathrm{N}(10)$	1.33 (7)
$\mathrm{C}(2)-\mathrm{N}(5)$	1.27 (3)		$\mathrm{C}(4)-\mathrm{N}(11)$	1.35 (6)
$\mathrm{C}(2)-\mathrm{N}(6)$	1.35 (3)			
$\mathrm{O}(6) \cdots \mathrm{N}\left(1^{\text {II }}\right)$	3. 10 (5)		$\mathrm{O}(9) \cdots \mathrm{N}(7)$	$2 \cdot 81$ (4)
$\mathrm{O}(6) \cdots \mathrm{N}\left(1^{\text {ili }}\right)$	2.94 (4)		$\mathrm{O}(5) \cdots \mathrm{N}\left(7^{v}\right)$	3.14 (5)
$\mathrm{O}(2) \cdots \mathrm{N}\left(2^{\text {il }}\right.$)	2.89 (4)		$\mathrm{O}(10) \cdots \mathrm{N}\left(8^{\text {lv }}\right.$)	2.79 (4)
$\mathrm{O}(8) \cdots \mathrm{N}(3)$	2.84 (4)		$\mathrm{O}(5) \cdots \mathrm{N}\left(9^{\text {vl }}\right) \quad 3$	3.01 (5)
$\mathrm{O}(4) \cdots \mathrm{N}\left(3^{\text {liI }}\right.$)	2.91 (4)		$\mathrm{O}(7) \cdots \mathrm{N}\left(9^{\prime}\right) \quad 2$	2.99 (5)
$\mathrm{O}(5) \cdots \mathrm{N}\left(4^{\text {ii) }}\right.$)	2.91 (4)		$\mathrm{O}(5) \cdots \mathrm{N}\left(10^{\text {vil }}\right)$	3.03 (5)
$\mathrm{O}(7) \cdots \mathrm{N}\left(4^{\text {lii }}\right)$	$2 \cdot 88$ (4)		$\mathrm{Aq} \cdots \mathrm{N}(10) \quad 2$	2.96 (6)
$\mathrm{O}(11) \cdots \mathrm{N}\left(5^{\text {lv }}\right)$	2.98 (4)		$\mathrm{O}(5) \cdots \mathrm{N}\left(11^{\text {iv }}\right) \quad 3$	$3 \cdot 26$ (5)
$\mathrm{O}(1) \cdots \mathrm{N}\left(5^{1 \mathrm{II}}\right)$	3.00 (4)		$\mathrm{O}(12) \cdots \mathrm{N}\left(11^{\text {lv }}\right) \quad 3$	$3 \cdot 25$ (5)
$\mathrm{O}(4) \cdots \mathrm{N}(6)$	2.87 (4)		$\mathrm{O}(5) \cdots \mathrm{Aq}^{\text {lv }}$	3.04 (4)
$\mathrm{O}(8) \cdots \mathrm{N}\left(6^{\text {III }}\right)$	3.15 (5)		$O(7) \cdots A q^{\text {vill }}$	2.93 (4)

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (iii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (iv) $-x, y, \frac{1}{2}-z$; (v) $-\frac{1}{2}+x, \frac{1}{2}+y, z$; (vi) $x, 1-y, \frac{1}{2}+z$; (vii) $x, 1-y$, $-\frac{1}{2}+z$; (viii) $1+x, 1-y, \frac{1}{2}+z$.
coordinates are listed in Table 1, and derived dimensions in Tables 2 and 3.*

Discussion. The heptamolybdate anion is indeed present in guanidinium paramolybdate (Fig. 1). Here it has crystallographic point symmetry 2 , but as in the Na^{+}, K^{+}and NH_{4}^{+}salts it approximates to point symmetry mm . The dimensions (Tables 2 and 3) are similar to those found by Sjöbom \& Hedman (1973) and Evans, Gatehouse \& Leverett (1975). The seven MoO_{6} octahedra form a compact group by edge sharing. These octahedra are highly distorted; each Mo atom is displaced from the octahedron centre towards the periphery of the anion. Thus, the bonds around each Mo (Fig. 1 and Table 2) fall into three groups: (i) a short cis pair (Mo-O 1.70-1.75 \AA, $\mathrm{O}-\mathrm{Mo}-\mathrm{O}$ 104.1$105 \cdot 1^{\circ}$), terminal except for $\mathrm{Mo}(1)$ which shares all attached O atoms; (ii) a pair of medium length (1.89-2.03 $\AA), 142-153^{\circ}$ apart and each cis to both short bonds; and (iii) a long pair ($2 \cdot 13-2 \cdot 56 \AA$), each trans to a short bond. Consequently, the anion may be described in the following alternative way. A boat-like $\mathrm{Mo}_{6} \mathrm{O}_{18}$ ring is formed from six tetrahedra sharing corners. Each of these Mo atoms forms an additional long bond to an O atom of a seventh tetrahedron [$\mathrm{Mo}(1)$] above the centre of the boat. Two extra O atoms $\left[\mathrm{O}(3), \mathrm{O}\left(3^{\mathrm{i}}\right)\right]$, each forming four long bonds, complete the sixfold coordination of the Mo atoms.

There are six cations per anion, so the latter is unprotonated. The lengths of the shorter $\mathrm{N} \cdots \mathrm{O}$ contacts (Table 3) and their directions close to the cation planes indicate an extensive network of hydrogen bonds linking the cations and anions in three dimensions. The only N atoms not involved are $\mathrm{N}(2)$, and possibly also $\mathrm{N}(11)$ which makes only weak contacts with anion O atoms. The half molecule of

[^1]

Fig. 1. The $\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right]^{6-}$ anion. Heavy, light and dashed lines indicate short, medium and long bonds (see Discussion).
water is weakly bonded to $\mathrm{N}(10)$ of the half-cation across a centre of symmetry, and to two anion O atoms.

References

Day, V. W., Fredrich, M. F., Klemperer, W. G. \& Shum, W. (1977). J. Am. Chem. Soc. 99, 952-953.

Evans, H. T., Gatehouse, B. M. \& Leverett, P. (1975). J. Chem. Soc. Dalton Trans. pp. 505-514.
Fuchs, J. \& Hartl, L. (1976). Angew. Chem. 88, 385.
Gatehouse, B. M. (1977). J. Less-Common Met. 54, 283-288.

Gatehouse, B. M. \& Leverett, P. (1971). J. Chem. Soc. A, pp. 2107-2112.
Gmelins Handbuch der Anorganischen Chemie (1935). 8th ed., Part 53, pp. 220, 232, 254, 272. Berlin: Verlag Chemie.
Johansson, G., Pettersson, L. \& Ingri, N. (1974). Acta Chem. Scand. Ser. A, 28, 1119-1128.
Sasaki, Y. \& Sillen, L. G. (1968). Ark. Kemi, 28, 253-277.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
Sjöbom, K. \& Hedman, B. (1973). Acta Chem. Scand. 27, 3673-3691.

[^0]: * Equivalent isotropic thermal parameters defined by $U_{\text {eq }}=$ $\frac{1}{3} \sum_{l} \sum_{j} U_{i j} a_{l}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.
 \dagger Site-occupancy factor 0.5 .

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35762 (12 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

